Teoría de Juegos (Conceptualización)

La teoría de los juegos es una rama de la matemática con aplicaciones a la economía, sociología, biología y psicología, que analiza las interacciones entre individuos que toman decisiones en una marco de incentivos formalizados (juegos). En un juego, varios agentes buscan maximizar su utilidad eligiendo determinados cursos de acción. La utilidad final obtenida por cada individuo depende de los cursos de acción escogidos por el resto de los individuos.


La teoría de juegos es una herramienta que ayuda a analizar problemas de optimización interactiva. La teoría de juegos tiene muchas aplicaciones en las ciencias sociales. La mayoría de las situaciones estudiadas por la teoría de juegos implican conflictos de intereses, estrategias y trampas. De particular interés son las situaciones en las que se puede obtener un resultado mejor cuando los agentes cooperan entre sí, que cuando los agentes intentan maximizar sólo su utilidad.
La teoría de juegos fue ideada en primer lugar por John von Neumann. Luego, John Nash, A.W. Tucker y otros hicieron grandes contribuciones a la teoría de juegos.
JUEGO
Se denomina juego a la situación interactiva especificada por el conjunto de participantes, los posibles cursos de acción que puede seguir cada participante, y el conjunto de utilidades.
ESTRATEGIA
Cuando un jugador tiene en cuenta las reacciones de otros jugadores para realizar su elección, se dice que el jugador tiene una estrategia. Una estrategia es un plan de acciones completo que se lleva a cabo cuando se juega el juego. Se explicita antes de que comience el juego, y prescribe cada decisión que los agentes deben tomar durante el transcurso del juego, dada la información disponible para el agente. La estrategia puede incluir movimientos aleatorios.

RESULTADOS DE LOS JUEGOS

El resultado de un juego es una cierta asignación de utilidades finales. Se denomina resultado de equilibrio si ningún jugador puede mejorar su utilidad unilateralmente dado que los otros jugadores se mantienen en sus estrategias. Un equilibrio estratégico es aquel que se obtiene cuando, dado que cada jugador se mantiene en su estrategia, ningún jugador puede mejorar su utilidad cambiando de estrategia. Alternativamente, un perfil de estrategias conforma un equilibrio si las estrategias conforman la mejor respuesta a las otras.

FORMA NORMAL VS FORMA EXTENSIVA DE LOS JUEGOS

En juegos de forma normal, los jugadores mueven simultáneamente. Si el conjunto de estrategias es discreto y finito, el juego puede ser representado por una matriz NxM (ver abajo). Un juego en forma extensiva especifica el orden completo de movimientos a través de la dirección del juego, generalmente en un árbol de juego.

JUEGOS NxM

Una forma de juegos de dos jugadores, en la cual un jugador tiene N acciones posibles y el otro tiene M acciones posibles. En un juego así, los pares de utilidades o pagos pueden ser representados en una matriz y el juego es fácilmente analizable. Los juegos NxM dan una idea de cómo puede verse la estructura de un juego mas complejo.
ESTRATEGIA DOMINANTE
Una estrategia dominante es aquella elección que realiza el jugador independientemente de lo que haga el otro. En el juego representado en la matriz de arriba, la estrategia dominante para A es elegir “abajo”, mientras que la estrategia dominante para B es elegir “izquierda”. Estas estrategias dominantes dan como resultado el equilibrio de estrategias dominantes del juego. Si cada jugador tiene una estrategia dominante se puede predecir el resultado del juego.
Tomado de: www.econlink.com.ar/.../teoriadejuegos.shtml

No hay comentarios:

Publicar un comentario